Enevate Commercializing New Low Cost Battery Technology Providing Extreme Fast Charging and Long Range for Electric Vehicles

Enevate, a pioneer in advanced silicon-dominant lithium-ion (Li-ion) battery technology capable of extreme fast charging for electric vehicles (EVs), announced its new 4th generation technology optimized for high volume commercialization and manufacturing at gigafactory scale. Enevate is providing a solution to a difficult problem for automotive OEMs and EV battery manufacturers - providing extreme fast charging with high energy density and at lower material cost than conventional Li-ion batteries, while being compatible with existing battery fabrication facilities.

The new XFC-Energy technology achieves 5-minute charging to 75 percent capacity with 800 Wh/L cell energy density. Today's conventional large-format Li-ion EV cells are at 500-600 Wh/L and typically take over 1 hour to charge.

"Mass EV adoption by consumers and fleet owners will depend to a large degree on advanced battery technology that will remove current barriers to entry such as long charging times and limited range," said Christian Noske, Chairman of Alliance Ventures (Renault-Nissan-Mitsubishi). "Enevate is a key enabler for electric vehicles that are affordable, easy and quick to charge, and clean."

Dr. John Goodenough, a recipient of the 2019 Nobel Prize in chemistry for groundbreaking work in the development of lithium-ion batteries and who has served on Enevate's Advisory Board since 2010, added: "I salute the Enevate team for reaching this next important step in fulfilling the company's mission to develop and commercialize innovative battery technologies to accelerate the adoption of electrified mobility."

Enevate's 4th generation XFC-Energy technology stands to be a game-changer for the EV industry, providing a path to produce extreme fast-charge EV batteries at low cost and high-volume production. Enevate is currently working with multiple automotive OEMs and EV battery manufacturers to commercialize its technology for 2024-2025 model year EVs, utilizing existing manufacturing infrastructure with minimal investment required, a core goal of its development.

Enevate's 4th generation is the latest result of over 74 million hours of battery cell testing by Enevate's scientists, 1 million meters of electrodes produced in the company's R&D pilot line, and 2 billion test datapoints.

Enevate Founder and Chief Technology Officer Dr. Benjamin Park noted that Enevate's XFC-Energy technology has been designed for large-format pouch, prismatic and cylindrical EV cells, utilizing its pure silicon anode paired with nickel-rich NCA, NCM and NCMA advanced cathodes.

"Enevate's extreme fast charge technology enables a future where gas stations become drive-through EV charging stations - a win-win for consumers and the environment as electric vehicles replace those using gasoline," Dr. Park said. "Enevate's technology will help close the usability gap between today's EVs and gas cars."

Dr. Park will be discussing Enevate's technology on January 15 at the Advanced Automotive Battery Conference in Weisbaden, Germany, in a presentation titled "Charging Ahead: Commercializing Fast-Charge Si-Dominant Li-ion Cells for EVs."

XFC-Energy Technology Technical Details

  • Cell technology scalable for large-format pouch, prismatic and cylindrical EV cells suitable for various battery module and pack architectures. Achieves 800 Wh/L and 340 Wh/kg in large-format EV cells.
  • Pure silicon-dominant anode technology tunable with 10-60 µm thickness and 1000-2000mAh/g that can be paired with NCA, NCM811, NCMA, low-cobalt, or other advanced cathode technologies.
  • Continuous roll-to-roll anode manufacturing processes designed and capable of achieving over 80 meters per minute electrode production, over 10 GWh per electrode production line, with pure silicon anode rolls greater than 1 meter wide and longer than 5 kilometers in length sufficient for high volume gigafactory production, among other features.
  • Lower anode material cost (dollar per kWh) than conventional and synthetic graphite.
  • Transformative performance improvement, with five-minute charge to 75 percent of battery capacity, and, when paired with a high-nickel cathode, capable of over 1000 cycles using an EV drive cycle test and operation at -20ËšC and below temperatures.
  • Bottom line: Five-minute extreme fast charging, high energy density, low temperature operation, low cost and superior safety.

Enevate | www.enevate.com