Page 14 - North American Clean Energy May/June 2020 Issue
P. 14

  wind power
   If there is one constant in energy production over the past several decades, it has to be change. The energy landscape is in constant motion, reacting to changes in demand, regulations, or the shift from carbon-based energy to renewable energy sources like solar and wind. If there is a second constant, it’s the need to keep workers at height safe while building, running, and maintaining the machines that produce the energy that runs the country (and the world).
  In many ways, height safety in the clean energy sector resembles that of any other industry.
Workers still rely on the same basic A-B-C model
of building a personal fall arrest system: an appropriate Anchorage connector, which attaches to a sound structure; Bodywear that the worker dons whenever exposed to a fall hazards; and a Connector to connect the two. There are, however, a few considerations that seem to crop up in wind and solar more frequently than most other jobsites.
Harness D-ring Configuration and Design
More so than their counterparts working on residential or commercial buildings, workers climbing wind turbines often rely on fixed ladder- systems, in which a worker connects a cable grab device to a tensioned steel cable that runs the height of a permanently installed steel ladder. Also, while ascending or descending the ladder, they may be required to stop and perform work at a specific location for an extended period of time – also called Work Positioning. To properly address these two
fall protection scenarios, a full-body harness must include a sternal D-ring connection point and side D-ring connection points, in addition to the standard dorsal D-ring most commonly used for fall arrest.
A sternal D-ring connection to a fixed-ladder system must be configured to keep total free fall to 3’ or less, and may only be used while actively ascending or descending the fixed ladder system. At no time should the worker pull against the steel cable on a fixed ladder system as a form of
fall restraint or work positioning. Although both conditions might look similar, once the worker stops their ascent or descent mid-span, they must transition to a work positioning application, and utilize an appropriate “Y” work positioning lanyard that connects the harnesses side D-rings to a compatible anchor.
Workers climbing fixed ladder systems also require greater flexibility and harness ergonomics than those who remain primarily on a single level throughout the workday. Manufacturers attend
to these needs by altering vertical torso straps
from the more parallel style, to a Y configuration (which centralizes webbing for greater range of arm motion), or reconfiguring waist belt webbing (which permits freer leg movement while climbing).
SRL Lifeline and Lanyard Materials
Green energy solutions frequently rely on lightweight or specialized materials such as carbon-fiber, structural foams, or specialized glass (in the case of solar panels). Each of which is susceptible to damage, especially during handling or installation. To prevent damage from incidental lifeline/material contact where leading-edge work is required, look for nylon-coated galvanized
steel lifelines. For fall restraint applications, pay attention to webbing lifelines.
Rescue at Height
Although there is really no such thing as a ‘routine’ rescue in any industry, wind turbine
    14
MAY•JUNE020///www.nacleanenergy.com
Protecting from
a Wind Fall
by Baxter Byrd
Take Your Career To New Heights
With Composite Windblade Repair Training
       +1.775.827.6568 www.abaris.com
    Advancing Composite Technology Since 1983
             2







































































   12   13   14   15   16